This interface allows you to interactively explore the 100 m spatial resolution global map of Local Climate Zones (LCZ), that is derived from multiple earth observation datasets and expert LCZ class labels. The LCZ typology (Stewart and Oke, 2012) is a universal urban typology that can distinguish urban areas on a holistic basis, accounting for the typical combination of micro-scale land-covers and associated physical properties. The LCZ scheme is distinguished from other land use / land cover schemes by its focus on urban and rural landscape types, which can be described by any of the 17 classes in the LCZ scheme. Its strong added value is thus the diversity of urban classes, which are easily interpretable and globally consistent, capturing the intra-urban variability of surface forms and land functions.
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., and Bechtel, B. (2022): A global map of local climate zones to support earth system modelling and urban-scale environmental science, Earth Syst. Sci. Data, 14, 3835-3873, https://doi.org/10.5194/essd-14-3835-2022.
Demuzere, M., Kittner, J., Martilli, A., Mills, G., Moede, C., Stewart, I. D., van Vliet, J., and Bechtel, B. (2022): Global map of Local Climate Zones. Zenodo. https://doi.org/10.5281/zenodo.6364593.
The dataset is also available in the Google Earth Engine Data Catalog and the ImageCollection can be accessed via:
The global LCZ Map is also available as a Tile Map Service, which can be used for various applications (GIS, Python, R. etc. ...) in your own project.
Currently there are two versions of the global LCZ Map available you can choose from:
https://lcz-generator.rub.de/tms/global-map-tiles/latest/{z}/{x}/{y}.png
https://lcz-generator.rub.de/tms-inverted/global-map-tiles/latest/{z}/{x}/{y}.png
https://lcz-generator.rub.de/tms/global-map-tiles/v3/{z}/{x}/{y}.png
https://lcz-generator.rub.de/tms-inverted/global-map-tiles/v3/{z}/{x}/{y}.png
https://lcz-generator.rub.de/tms/global-map-tiles/v2/{z}/{x}/{y}.png
https://lcz-generator.rub.de/tms-inverted/global-map-tiles/v2/{z}/{x}/{y}.png
contextily
¶
geopandas
plot
You can use
contextily
to add the LCZ map to a
geopandas
plot.
pip install -U geopandas contextily
Provider
instanceimport contextily as cx import geopandas as gpd from xyzservices import TileProvider lcz_map = TileProvider( url='https://lcz-generator.rub.de/tms-inverted/global-map-tiles/latest/{z}/{x}/{y}.png', html_attribution='© <a href="https://doi.org/10.5194/essd-14-3835-2022">Matthias Demuzere et al. 2022</a>', attribution='© Matthias Demuzere et al. 2022. DOI: 10.5194/essd-14-3835-2022', min_zoom=2, max_zoom=13, name='Global LCZ Map', crs='EPSG:4326', )
geopandas
and contextily
as
a background map
# any geopandas GeoDataFrame
gdf = gpd.GeoDataFrame(
['Bochum', 'Berlin', 'Munich', 'Kiel'],
geometry=gpd.points_from_xy(
x=[7.2618, 13.3911, 11.5796, 10.1285],
y=[51.4438, 52.5169, 48.1535, 54.3210],
crs='EPSG:4326',
),
)
# plot the dataframe
ax = gdf.plot(color='red', markersize=75, edgecolor='white')
# add the global LCZ map as a basemap
cx.add_basemap(ax, crs='EPSG:4326', source=lcz_map)
ax.set_ylabel('Latitude [°]')
ax.set_xlabel('Longitude [°]')
madrid = cx.Place('Madrid', source=lcz_map, zoom=11) ax = madrid.plot()
https://lcz-generator.rub.de/tms/global-map-tiles/latest/{z}/{x}/{-y}.png